Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Trends Biotechnol ; 41(3): 374-395, 2023 03.
Article in English | MEDLINE | ID: covidwho-2266394

ABSTRACT

Biosensors are utilized in several different fields, including medicine, food, and the environment; in this review, we examine recent developments in biosensors for healthcare. These involve three distinct types of biosensor: biosensors for in vitro diagnosis with blood, saliva, or urine samples; continuous monitoring biosensors (CMBs); and wearable biosensors. Biosensors for in vitro diagnosis have seen a significant expansion recently, with newly reported clustered regularly interspaced short palindromic repeats (CRISPR)/Cas methodologies and improvements to many established integrated biosensor devices, including lateral flow assays (LFAs) and microfluidic/electrochemical paper-based analytical devices (µPADs/ePADs). We conclude with a discussion of two novel groups of biosensors that have drawn great attention recently, continuous monitoring and wearable biosensors, as well as with perspectives on the commercialization and future of biosensors.


Subject(s)
Biosensing Techniques , Medicine , Lab-On-A-Chip Devices , Delivery of Health Care
2.
Talanta ; 256: 124275, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2183604

ABSTRACT

In this study, it is confirmed that without addition of organic solvent and embedding polymer hydrogel into glass nanopore, bare glass nanopore can faithfully measure various lengths of DNA duplexes from 200 to 3000 base pairs with 200 base pairs resolution, showing well-separated peak amplitudes of blockage currents. Furthermore, motivated by this readout capability of duplex DNA, amplicons from Polymerase Chain Reaction (PCR) amplification are straightforwardly discriminated by bare glassy nanopore without fluorescent labeling. Except simultaneous discrimination of up to 7 different segments of the same lambda genome, various pathogenic bacteria and viruses including SARS-CoV-2 and its mutants in clinical samples can be discriminated at high resolution. Moreover, quantitative measurement of PCR amplicons is obtained with detection range spanning from 0.75 aM to 7.5 pM and detection limit of 7.5 aM, which reveals that bare glass nanopore can faithfully disclose PCR results without any extra labeling.


Subject(s)
COVID-19 , Nanopores , Humans , SARS-CoV-2/genetics , Reading , Polymerase Chain Reaction , DNA/genetics , Bacteria , COVID-19 Testing
3.
Biosensors (Basel) ; 12(7)2022 Jul 03.
Article in English | MEDLINE | ID: covidwho-1957223

ABSTRACT

In vitro diagnosis (IVD) has become a hot topic in laboratory research and achievement transformation. However, due to the high cost, and time-consuming and complex operation of traditional technologies, some new technologies are being introduced into IVD, to solve the existing problems. As a result, IVD has begun to develop toward point-of-care testing (POCT), a subdivision field of IVD. The pandemic has made governments and health institutions realize the urgency of accelerating the development of POCT. Microfluidic paper-based analytical devices (µPADs), a low-cost, high-efficiency, and easy-to-operate detection platform, have played a significant role in advancing the development of IVD. µPADs are composed of paper as the core material, certain unique substances as reagents for processing the paper, and sensing devices, as auxiliary equipment. The published reviews on the same topic lack a comprehensive and systematic introduction to µPAD classification and research progress in IVD segmentation. In this paper, we first briefly introduce the origin of µPADs and their role in promoting IVD, in the introduction section. Then, processing and detection methods for µPADs are summarized, and the innovative achievements of µPADs in IVD are reviewed. Finally, we discuss and prospect the upgrade and improvement directions of µPADs, in terms of portability, sensitivity, and automation, to help researchers clarify the progress and overcome the difficulties in subsequent µPAD research.


Subject(s)
Microfluidic Analytical Techniques , Paper , Lab-On-A-Chip Devices , Microfluidics , Point-of-Care Testing
4.
Talanta ; 243: 123388, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1735000

ABSTRACT

Nucleic acid detection technology is now widely used in scientific research and clinical testing, such as infectious and genetic diseases screening, molecular diagnosis of tumors and pharmacogenomic research, which is also an important part of in vitro diagnostics (IVD). However, with the increasing requirements of diagnosis and treatment, existing nucleic acid detection technologies are facing challenges in dealing with the current problems (especially since the outbreak of coronavirus disease in 2019 (Covid-19)). Recently, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (CRISPR/Cas)-based diagnostics have become a hot spot of attention. CRISPR/Cas has been developed as a molecular detection tool besides scientific research in biology and medicine fields, and some CRISPR-based products have already been translated. It is known as the "next-generation molecular diagnostic technology" because of its advantages such as easy design and accurate identification. CRISPR/Cas relies on pre-amplification of target sequences and subsequent detection of Cas proteins. Combining the CRISPR/Cas system with various isothermal nucleic acid amplification strategies can generate amplified detection signals, enrich low abundance molecular targets, improve the specificity and sensitivity of analysis, and develop point-of-care (POC) diagnostic techniques. In this review, we analyze the current status of CRISPR/Cas systems and isothermal amplification, report the advantages of combining the two and summarize the recent progress with the integration of both technologies with POC sensors in the nucleic acid field. In addition, the challenges and future prospects of CRISPR technology combined with isothermal amplification strategies in biosensing and clinical applications are discussed.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19/diagnosis , CRISPR-Cas Systems/genetics , Humans , Nucleic Acid Amplification Techniques , Point-of-Care Systems
5.
Chem Eng Sci ; 251: 117430, 2022 Apr 06.
Article in English | MEDLINE | ID: covidwho-1704061

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is widely used in detection of pathogenic microorganisms including SARS-CoV-2. However, the performance of LAMP assay needs further exploration in the emerging SARS-CoV-2 variants test. Here, we design serials of primers and select an optimal set for LAMP-based on SARS-CoV-2 N gene for a robust and visual assay in SARS-CoV-2 diagnosis. The limit of detectable template reaches 10 copies of N gene per 25 µL reaction at isothermal 58℃ within 40 min. Importantly, the primers for LAMP assay locate at 12 to 213 nt of N gene, a highly conservative region, which serves as a compatible test in emerging SARS-CoV-2 variants. Comparison to a commercial qPCR assay, this LAMP assay exerts the high viability in diagnosis of 41 clinical samples. Our study optimizes an advantageous LAMP assay for colorimetric detection of SARS-CoV-2 and emerging variants, which is hopeful to be a promising test in COVID-19 surveillance.

7.
Talanta ; 225: 121898, 2021 Apr 01.
Article in English | MEDLINE | ID: covidwho-955924

ABSTRACT

The current situation of the Covid-19 pandemic is indicated by a huge number of infections, high lethality, and rapid spread. These circumstances have stopped the activity of almost the entire world, affecting severely the global economy. A rapid diagnosis of the Covid-19 and a generalized testing protocol is essential to fight against the pandemic and to maintain health control in the population. Principal biosensing and diagnostic technologies used to monitor the spread of the SARS-CoV-2 are based on specific genomic analysis and rapid immune tests, both with different technology platforms that include advantages and disadvantages. Most of the in vitro diagnosis companies are competing to be the first on validating under different regulations their technology for placing their platforms for Covid-19 detection as fast as possible in this big international market. A comprehensive analysis of the commercialized technologies for the genomic based sensing and the antibody/antigen detection methods devoted to Covid-19 diagnosis is described in this review, which have been detailed and listed under different countries regulations. The effectiveness of the described technologies throughout the different stages of the disease and a critical comparison of the emerging technologies in the market to counterattack this pandemic have been discussed.


Subject(s)
COVID-19/diagnosis , Immunoassay/methods , Molecular Diagnostic Techniques/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Antibodies, Viral/immunology , Antigens, Viral/immunology , COVID-19/epidemiology , COVID-19/virology , Humans , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Sensitivity and Specificity
8.
Exp Ther Med ; 20(5): 13, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-771405

ABSTRACT

COVID-19 is caused by a novel coronavirus (2019-nCoV or SARS-CoV-2) and has become a global public health emergency. Rapid and accurate molecular diagnostic technologies are crucial for the screening, isolation, treatment, prevention and control of COVID-19. Currently, nucleic acid detection-based techniques and rapid diagnostic tests that detect antigens or antibodies specific to 2019-nCoV infections are the primary diagnostic tools. China National Medical Products Administration has opened a special channel for approval of new pharmaceuticals owing to urgent clinical needs, with 18 nucleic acid detection kits, 11 protein detection kits and 1 sequencing-related equipment and supporting software having been approved until April 23, 2020. The current review summarizes the application situation, advantages, disadvantages and associated technology improvement trends of molecular diagnostics for COVID-19 in China, identifies knowledge gaps and indicates future priorities for research in this field. The most effective way to prevent and control COVID-19 is early detection, diagnosis, isolation and treatment. In the clinical application of molecular diagnosis technology, it is necessary to combine pathogenic microbiology, immunology and other associated detection technologies, advocate the combination of multiple technologies, determine how they complement each other, enhance practicability and improve the ability of rapid and accurate diagnosis and differential diagnosis of COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL